
Chapter 5.2 and 5.3
Sara Gestrelius

Last t ime: Classif ication

Hybrid metaheuristics

Low-level High-level

Relay Teamwork Relay Teamwork

LRH LTH HRH HTH

5.2 Combining metaheuristics with
mathematical programming

Mathematical Programming
Low-level replay

Low-level teamwork
High-level relay

High-level teamwork

Mathematical Programming
MP vs MH

Enumerative algorithms

Relaxation and decomposition methods

Cutting Plane and Pricing algorithms

Mathematical Programming

Why?

Mathematical Programming: Exact but
expensive in memory and time.

Metaheuristics: Not exact but manageable in
memory and time.

(mainly if your problem is discrete and/or have nonlinear hard
constraints/objective function)

Mathematical Programming

Enumerative algorithms

Branch and bound:
1. Branch: Divide problem e.g. x=1 x=0 if x

binary.
2. Bound: Keep track of upper bound (i.e. best

solution found so far) and also lower bound for
all nodes.

3. Prune: If lower bound > upper bound, don’t
investigate that node further.

Mathematical Programming

Enumerative algorithms

Branch and bound:

50

130 134 130

Mathematical Programming

Enumerative algorithms

Branch and bound:

50

130 134

143 130

130

Mathematical Programming

Enumerative algorithms

Branch and bound:

50

130 134

143 130

130

Mathematical Programming

Enumerative algorithms

Branch and bound:

50

130 134

143 130

130

140 143

Mathematical Programming

Enumerative algorithms

Dynamic Programming:
Bellman’s Principle is a necessary condition:

“The sub-policy of an optimal policy is in itself optimal with
regard to the start and end states”

Mathematical Programming

Enumerative algorithms

Dynamic Programming:
1. Divide the problem into stages N. For each stage there should be a

number of states x.
2. Define the cost for the initial states in the initial stage.
3. Define a recursive relation for a state at stage k given states of previous

stages.

Mathematical Programming

Enumerative algorithms
Dynamic Programming:
Example: The knapsack problem.
1. Stages = items, states = how much weight capacity to use at this and all

preceding stages, i.e. for this an all preceding items (0,1,2,3,4,5).
2. Cost of initial state,
3. Recursive relation:

I tem Weight
(w)

Uti l i ty (u)

1 2 65

2 3 80

3 1 30

Mathematical Programming

Relaxation and decomposit ion methods

Linear programming relaxation:
• Ignore the integrality constraint of an IP.
• Handy for finding lower bounds.

Lagrangian relaxation:
• Move a constraint into the objective function (and weigh it with)

Mathematical Programming

Relaxation and decomposit ion methods

Benders Decomposit ion:
• A lot, but basically divide into master and sub-

problem and use sub-problem to generate new
constraints to master.

Mathematical Programming

Relaxation and decomposit ion methods

Cutting planes:
Add constraints to relaxed IP to generate tighter IP
relaxations.

http://mat.gsia.cmu.edu/orclass/integer/node14.html

Mathematical Programming

Cutting plane and pricing algorithms

Column generation (pricing):
Master problem (without all variables) and sub-problem
(that generates variables that are likely to be useful to the
Master).

Master

New columnsDuals

Subproblem

Mathematical Programming

Cutting plane and pricing algorithms

Low-level relay hybrid

S-metaheuristics in exact methods

Exact methods in S-metaheuristics

Low-level Relay Hybrid

S-metaheuristics in exact methods

Branch and Bound:
1. Node selection strategy: Which node should we branch on next?

How? Use problem knowledge and S-metaheuristics.
2. Upper bound generation: Use S-metaheuristics to make complete
solution from partial at nodes.

Cutt ing planes and Pricing algorithms:
2. Cut generation: Extract set of violated capacity constraints of the

relaxed problem.
3. Generate new variables (columns): what it says.

Low-level Relay Hybrid

Exact methods in S-metaheuristics

1. Very large neighbourhoods: use mathematical
programming to search them and find the best or
improving solution in the (whole or subset) neighbourhood
(B&B, DP, Network Flow algorithms, matching algorithms).

2. Lower Bounds: use in S-metaheuristic. May also use
other information e.g. Lagrangian multipliers.

Low-level Teamwork hybrid

P-metaheuristics in exact methods

Exact methods in P-metaheuristics

Low-level Teamwork Hybrid

P-metaheuristics in exact methods

Branching
• Which node to branch on? Which values to use in branching? Which node

to solve next?
• Genetic algorithms have been used for solving the node selection problem.

Low-level Teamwork Hybrid

P-metaheuristics in exact methods

Local Branching (sort of l ike local search in
MIP).
Local branching can be used for binary variables. Assumes s is a
partial solution (of the binaries in the problem). Then let the
optimization algorithm solve the problem for the k-opt neighbourhood
of s, and if no better solution is found, solve it for the other branch
(change k or more variables).

Low-level Teamwork Hybrid

Exact methods in p-metaheuristics

Recombination, mutation :
• Use an exact algorithm for combining parents into new

children, mutation.

Exact decoding:
• Use exact algorithms for generating a solution from the

incomplete encoding used by the heuristics.

Low-level Teamwork Hybrid

Exact methods in p-metaheuristics

Exact search ingredients:
• Lower bounds: Gilmore-Lawler lower bounds and dual variable

values have been used in the construction phase of ant colony to
solve the quadratic assignment problem. Also, lower bounds have
been used in EA for mutation/crossover, where solutions that
exceed a given bound are deleted.

• Partial solutions: The partial solutions of Branch and Bound may
be interesting initial solutions.

High-level relay hybrid

Information provided by metaheuristics

Information provided by exact methods

High-level Relay Hybrid

Information provided by metaheuristics

1. Good upper bound: Solve the problem using a heuristic
and start from that heuristic. Helps you prune more.

2. Fixing variables: Partition variables into set X and Y, let
metaheuristic fix variables in set X and solve for variables in Y
using exact methods.

3. Domain reduction: Heuristically perform a domain reduction
for the decision variables and solve exactly within the reduced
domain.

High-level Relay Hybrid

Information provided by exact algorithms

1. Partial solutions: Complete with metaheuristic.

2. Problem reduction: Used tree-search to reduce scheduling
problem size and then used tabu search with simplified
objective function to fins schedule.

3. Relaxed optimal solution and their duals : May be
exploited by metaheuristics.

High-level teamwork hybrid
Parallel cooperation

Specialist cooperation

High-level Teamwork Hybrid

Parallel Cooperation

E.g. combining Branch and Bound with Simulated Annealing. The
SA algorithm send improved upper bounds to B&B, and any integer
solution found by B&B is used as an alternative reheated solution.

Branch and bound
algori thm

Non-explored nodes

Upper bound

S-metaheurist ic

Initial solution

Best solution

Partial solution
(new initial solution)

Best solution found
(new upper bound)

High-level teamwork hybrid

Specialist cooperation

E.g. local search used to generate new columns.

Communication
medium

Branch and X

LP solver
P-metaheuristic

S-metaheuristic

Subproblems,
upper bound and
so on

Subpopulation of
solutions

Optimal solution
for subproblems,
lower bounds

Optimal solutions for relaxed
problems and duals
Partial solutions, and so on

5.2 Combining metaheuristics with
Constraint Programming

Constraint Programming

Hybrids

Constraint Programming

CP vs MH

Propagation and search

Constraint programming

Constraint programming vs. Metaheurist ics

Constraint Programming: good at solving combinatorial
optimization problems that are tightly constrained.

Metaheuristics: good at solving problems that are
underconstrained.

Constraint programming

Search and propagate
Constraints: Constraint programs consists of a set of variables
linked by a set of constraints, e.g. the all_different constraint. The
problem is solved by iterating between:

1. Propagate: Remove all values from variable domains that can’t
be in a feasible solution. There’s lot’s of code for this already.

2. Search: Tree search, partition problem into sub-problems by
adding new constraints. You’ll probably need to write your own code
for this.

1. Branch ordering?
2. Variable selection?

Hybrids
Low-level relay hybrid

Low-level teamwork hybrid

High-leve relay hybrid

High-level teamwork hybrid

Hybrids

Low-level relay hybrid

• Neighbourhoods with expensive testing of feasibil i ty: CP
is very good at feasibly!

• Large neighbourhoods: Once again, CP is good at
feasibility…?

Hybrids

Low-level teamwork hybrids
Embedding metaheuristics into Constraint
Programming:
• Node improvement: Use metaheuristics to improve or repair

the nodes of the search tree.
• Discrepancy-based search algorithms: Generate near-

greedy paths in a serch tree.
• Branch-ordering: Use metaheuristic to decide which child node

to investigate first.
• Variable selection: Choose which branches to make.
• Branching restriction: Filter the branches of the search tree.

Hybrids

Low-level teamwork hybrids
Embedding constraint programming into
metaheuristics:
• Recombination, large neighbourhoods, lower bounds, partial

solutions, decoders…

Hybrids

High-level relay hybrids

Information provided by metaheurist ic:
• Same as for when combining with MP.

Information provided by CP:
• Same as for when combining with MP.

Hybrids

High-level teamwork hybrids

Not that many.

Communication
medium

CP

MP

Metaheuristic

Sub-problems, upper
bound, constraints and so
on

Best neighbour, optimal solutions
for sub-problems, domain
reductions, and so on

Optimal solutions for relaxed problems
and duals, partial solutions, lower
bounds and so on

www.sics.se

	Slide 1
	Last time: Classification
	Slide 3
	Slide 4
	Mathematical Programming WHY?
	Mathematical Programming Enumerative algorithms
	Mathematical Programming Enumerative algorithms
	Mathematical Programming Enumerative algorithms
	Mathematical Programming Enumerative algorithms
	Mathematical Programming Enumerative algorithms
	Mathematical Programming Enumerative algorithms
	Mathematical Programming Enumerative algorithms
	Mathematical Programming Enumerative algorithms
	Mathematical Programming Relaxation and decomposition methods
	Mathematical Programming Relaxation and decomposition methods
	Mathematical Programming Relaxation and decomposition methods
	Mathematical Programming Cutting plane and pricing algorithms
	Mathematical Programming Cutting plane and pricing algorithms
	Slide 19
	low Level Relay Hybrid S-metaheuristics in exact methods
	low Level Relay Hybrid exact methods in S-metaheuristics
	Slide 22
	low Level teamwork Hybrid P-metaheuristics in exact methods
	low Level teamwork Hybrid P-metaheuristics in exact methods
	low Level teamwork Hybrid exact methods in p-metaheuristics
	low Level teamwork Hybrid exact methods in p-metaheuristics
	Slide 27
	high Level Relay Hybrid Information provided by metaheuristics
	Slide 29
	Slide 30
	high Level teamwork Hybrid parallel cooperation
	high Level teamwork Hybrid Specialist cooperation
	Slide 33
	Slide 34
	Slide 35
	Constraint programming Search and propagate
	Slide 37
	Hybrids low-level relay hybrid
	Hybrids low-level TEAMWORK hybrids
	Hybrids low-level TEAMWORK hybrids
	Hybrids high-level hybrid hybrids
	Hybrids high-level teamwork hybrids
	Slide 43

